Cargando…
Synergistic Electric and Thermal Effects of Electrochromic Devices
Electrochromic devices are the preferred devices for smart windows because they work independently of uncontrollable environmental factors and rely more on the user’s personal feelings to adjust actively. However, in practical applications, the ambient temperature still has an impact on device perfo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788548/ https://www.ncbi.nlm.nih.gov/pubmed/36557489 http://dx.doi.org/10.3390/mi13122187 |
_version_ | 1784858780390916096 |
---|---|
author | Yuan, Meng Yin, Hanlin Liu, Yitong Wang, Xiaohua Yuan, Long Duan, Yu |
author_facet | Yuan, Meng Yin, Hanlin Liu, Yitong Wang, Xiaohua Yuan, Long Duan, Yu |
author_sort | Yuan, Meng |
collection | PubMed |
description | Electrochromic devices are the preferred devices for smart windows because they work independently of uncontrollable environmental factors and rely more on the user’s personal feelings to adjust actively. However, in practical applications, the ambient temperature still has an impact on device performance, such as durability, reversibility and switching performance, etc. These technical issues have significantly slowed down the commercialization of electrochromic devices (ECDs). It is necessary to investigate the main reasons for the influence of temperature on the device and make reasonable optimization to enhance the effectiveness of the device and extend its lifetime. In recent years, with the joint efforts of various outstanding research teams, the performance of electrochromic devices has been rapidly improved, with a longer lifetime, richer colors, and better color contrast. This review highlights the important research on temperature–dependent electrochromic properties in recent years. Also, the reported structures, mechanisms, characteristics, and methods for improving electrochromic properties are discussed in detail. In addition, the challenges and corresponding strategies in this field are presented in this paper. This paper will inspire more researchers to enrich the temperature–dependent properties of ECDs and their related fields with innovative means and methods to overcome the technical obstacles faced. |
format | Online Article Text |
id | pubmed-9788548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97885482022-12-24 Synergistic Electric and Thermal Effects of Electrochromic Devices Yuan, Meng Yin, Hanlin Liu, Yitong Wang, Xiaohua Yuan, Long Duan, Yu Micromachines (Basel) Review Electrochromic devices are the preferred devices for smart windows because they work independently of uncontrollable environmental factors and rely more on the user’s personal feelings to adjust actively. However, in practical applications, the ambient temperature still has an impact on device performance, such as durability, reversibility and switching performance, etc. These technical issues have significantly slowed down the commercialization of electrochromic devices (ECDs). It is necessary to investigate the main reasons for the influence of temperature on the device and make reasonable optimization to enhance the effectiveness of the device and extend its lifetime. In recent years, with the joint efforts of various outstanding research teams, the performance of electrochromic devices has been rapidly improved, with a longer lifetime, richer colors, and better color contrast. This review highlights the important research on temperature–dependent electrochromic properties in recent years. Also, the reported structures, mechanisms, characteristics, and methods for improving electrochromic properties are discussed in detail. In addition, the challenges and corresponding strategies in this field are presented in this paper. This paper will inspire more researchers to enrich the temperature–dependent properties of ECDs and their related fields with innovative means and methods to overcome the technical obstacles faced. MDPI 2022-12-10 /pmc/articles/PMC9788548/ /pubmed/36557489 http://dx.doi.org/10.3390/mi13122187 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Yuan, Meng Yin, Hanlin Liu, Yitong Wang, Xiaohua Yuan, Long Duan, Yu Synergistic Electric and Thermal Effects of Electrochromic Devices |
title | Synergistic Electric and Thermal Effects of Electrochromic Devices |
title_full | Synergistic Electric and Thermal Effects of Electrochromic Devices |
title_fullStr | Synergistic Electric and Thermal Effects of Electrochromic Devices |
title_full_unstemmed | Synergistic Electric and Thermal Effects of Electrochromic Devices |
title_short | Synergistic Electric and Thermal Effects of Electrochromic Devices |
title_sort | synergistic electric and thermal effects of electrochromic devices |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788548/ https://www.ncbi.nlm.nih.gov/pubmed/36557489 http://dx.doi.org/10.3390/mi13122187 |
work_keys_str_mv | AT yuanmeng synergisticelectricandthermaleffectsofelectrochromicdevices AT yinhanlin synergisticelectricandthermaleffectsofelectrochromicdevices AT liuyitong synergisticelectricandthermaleffectsofelectrochromicdevices AT wangxiaohua synergisticelectricandthermaleffectsofelectrochromicdevices AT yuanlong synergisticelectricandthermaleffectsofelectrochromicdevices AT duanyu synergisticelectricandthermaleffectsofelectrochromicdevices |