Cargando…

Evaluation of Objective Functions for the Optimal Design of an Assistive Robot

The number of individuals with upper or lower extremities dysfunction (ULED) has considerably increased in the past few decades, resulting in a high economic burden for their families and society. Individuals with ULEDs require assistive robots to fulfill all their activities of daily living (ADLs)....

Descripción completa

Detalles Bibliográficos
Autores principales: Sanjuan De Caro, Javier Dario, Sunny, Md Samiul Haque, Muñoz, Elias, Hernandez, Jaime, Torres, Armando, Brahmi, Brahim, Wang, Inga, Ghommam, Jawhar, Rahman, Mohammad H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788593/
https://www.ncbi.nlm.nih.gov/pubmed/36557505
http://dx.doi.org/10.3390/mi13122206
Descripción
Sumario:The number of individuals with upper or lower extremities dysfunction (ULED) has considerably increased in the past few decades, resulting in a high economic burden for their families and society. Individuals with ULEDs require assistive robots to fulfill all their activities of daily living (ADLs). However, a theory for the optimal design of assistive robots that reduces energy consumption while increasing the workspace is unavailable. Thus, this research presents an algorithm for the optimal link length selection of an assistive robot mounted on a wheelchair to minimize the torque demands of each joint while increasing the workspace coverage. For this purpose, this research developed a workspace to satisfy a list of 18 ADLs. Then, three torque indices from the literature were considered as performance measures to minimize; the three torque measures are the quadratic average torque (QAT), the weighted root square mean (WRMS), and the absolute sum of torques (AST). The proposed algorithm evaluates any of the three torque measures within the workspace, given the robot dimensions. This proposed algorithm acts as an objective function, which is optimized using a genetic algorithm for each torque measure. The results show that all tree torque measures are suitable criteria for assistance robot optimization. However, each torque measures yield different optimal results; in the case of the QAT optimization, it produces the least workspace with the minimum overall torques of all the joints. Contrarily, the WRMS and AST optimization yield similar results generating the maximum workspace coverage but with a greater overall torque of all joints. Thus, the selection between the three methods depends on the designer’s criteria. Based on the results, the presented methodology is a reliable tool for the optimal dimensioning of assistive robots.