Cargando…
Multivariate Sequential Analytics for Cardiovascular Disease Event Prediction
Background Automated clinical decision support for risk assessment is a powerful tool in combating cardiovascular disease (CVD), enabling targeted early intervention that could avoid issues of overtreatment or undertreatment. However, current CVD risk prediction models use observations at baseline...
Autores principales: | Hsu, William, Warren, Jim, Riddle, Patricia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788915/ https://www.ncbi.nlm.nih.gov/pubmed/36564011 http://dx.doi.org/10.1055/s-0042-1758687 |
Ejemplares similares
-
Medication adherence prediction through temporal modelling in cardiovascular disease management
por: Hsu, William, et al.
Publicado: (2022) -
Multivariate prediction of mixed, multilevel, sequential outcomes arising from in vitro fertilisation
por: Wilkinson, Jack, et al.
Publicado: (2021) -
Multivariate Methods for Genetic Variants Selection and Risk Prediction in Cardiovascular Diseases
por: Malovini, Alberto, et al.
Publicado: (2016) -
Piecewise multivariate modelling of sequential metabolic profiling data
por: Rantalainen, Mattias, et al.
Publicado: (2008) -
Multivariate analytical approaches for investigating brain-behavior relationships
por: Durham, E. Leighton, et al.
Publicado: (2023)