Cargando…
Identification of Pseudo-R genes in Vitis vinifera and characterization of their role as immunomodulators in host-pathogen interactions
INTRODUCTION: Duplication events are fundamental to co-evolution in host-pathogen interactions. Pseudogenes (Ψs) are dysfunctional paralogs of functional genes and resistance genes (Rs) in plants are the key to disarming pathogenic invasions. Thus, deciphering the roles of pseudo-R genes in plant de...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788958/ https://www.ncbi.nlm.nih.gov/pubmed/35933092 http://dx.doi.org/10.1016/j.jare.2022.07.014 |
Sumario: | INTRODUCTION: Duplication events are fundamental to co-evolution in host-pathogen interactions. Pseudogenes (Ψs) are dysfunctional paralogs of functional genes and resistance genes (Rs) in plants are the key to disarming pathogenic invasions. Thus, deciphering the roles of pseudo-R genes in plant defense is momentous. OBJECTIVES: This study aimed to functionally characterize diverse roles of the resistance Ψs as novel gene footprints and as significant gene regulators in the grapevine genome. METHODS: PlantPseudo pipeline and HMM-profiling identified whole-genome duplication-derived (WGD) Ψs associated with resistance genes (Ψ-Rs). Further, novel antifungal and antimicrobial peptides were characterized for fungal associations using protein–protein docking with Erysiphe necator proteins. miRNA and tasiRNA target sites and transcription factor (TF) binding sites were predicted in Ψ-Rs. Finally, differential co-expression patterns in Ψ-Rs-lncRNAs-coding genes were identified using the UPGMA method. RESULTS: 2,746 Ψ-Rs were identified from 31,032 WGD Ψs in the genome of grapevine. 69-antimicrobial and 81-antifungal novel peptides were generated from Ψ-Rs. The putative genic potential was predicted for five novel antifungal peptides which were further characterized by docking against E. necator proteins. 395 out of 527 resistance loci-specific Ψ-Rs were acting as parental gene mimics. Further, to explore the diverse roles of Ψ-Rs in plant-defense, we identified 37,026 TF-binding sites, 208 miRNA, and 99 tasiRNA targeting sites on these Ψ-Rs. 194 Ψ-Rs were exhibiting tissue-specific expression patterns. The co-expression network analysis between Ψs-lncRNA-genes revealed six out of 79 pathogen-responsive Ψ-Rs as significant during pathogen invasion. CONCLUSIONS: Our study provides pathogen responsive Ψ-Rs integral for pathogen invasion, which will offer a useful resource for future experimental validations. In addition, our findings on novel peptide generations from Ψ-Rs offer valuable insights which can serve as a useful resource for predicting novel genes with the futuristic potential of being investigated for their bioactivities in the plant system. |
---|