Cargando…

Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head‐up tilt (HUT) may...

Descripción completa

Detalles Bibliográficos
Autores principales: Kunkel, Olivia N., Rand, Taylor A., Pyle, Joseph G., Baumfalk, Dryden R., Horn, Andrew G., Opoku‐Acheampong, Alexander B., Ade, Carl J., Musch, Timothy I., Ramsey, Michael W., Delp, Michael D., Behnke, Bradley J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788965/
https://www.ncbi.nlm.nih.gov/pubmed/36564177
http://dx.doi.org/10.14814/phy2.15548
_version_ 1784858871539433472
author Kunkel, Olivia N.
Rand, Taylor A.
Pyle, Joseph G.
Baumfalk, Dryden R.
Horn, Andrew G.
Opoku‐Acheampong, Alexander B.
Ade, Carl J.
Musch, Timothy I.
Ramsey, Michael W.
Delp, Michael D.
Behnke, Bradley J.
author_facet Kunkel, Olivia N.
Rand, Taylor A.
Pyle, Joseph G.
Baumfalk, Dryden R.
Horn, Andrew G.
Opoku‐Acheampong, Alexander B.
Ade, Carl J.
Musch, Timothy I.
Ramsey, Michael W.
Delp, Michael D.
Behnke, Bradley J.
author_sort Kunkel, Olivia N.
collection PubMed
description Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head‐up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R‐3327 (AT‐1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co‐opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats.
format Online
Article
Text
id pubmed-9788965
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97889652022-12-28 Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats Kunkel, Olivia N. Rand, Taylor A. Pyle, Joseph G. Baumfalk, Dryden R. Horn, Andrew G. Opoku‐Acheampong, Alexander B. Ade, Carl J. Musch, Timothy I. Ramsey, Michael W. Delp, Michael D. Behnke, Bradley J. Physiol Rep Original Articles Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head‐up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R‐3327 (AT‐1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co‐opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats. John Wiley and Sons Inc. 2022-12-23 /pmc/articles/PMC9788965/ /pubmed/36564177 http://dx.doi.org/10.14814/phy2.15548 Text en © 2022 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Kunkel, Olivia N.
Rand, Taylor A.
Pyle, Joseph G.
Baumfalk, Dryden R.
Horn, Andrew G.
Opoku‐Acheampong, Alexander B.
Ade, Carl J.
Musch, Timothy I.
Ramsey, Michael W.
Delp, Michael D.
Behnke, Bradley J.
Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title_full Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title_fullStr Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title_full_unstemmed Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title_short Head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
title_sort head‐up tilt does not enhance prostate tumor perfusion or oxygenation in young rats
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788965/
https://www.ncbi.nlm.nih.gov/pubmed/36564177
http://dx.doi.org/10.14814/phy2.15548
work_keys_str_mv AT kunkelolivian headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT randtaylora headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT pylejosephg headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT baumfalkdrydenr headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT hornandrewg headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT opokuacheampongalexanderb headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT adecarlj headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT muschtimothyi headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT ramseymichaelw headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT delpmichaeld headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats
AT behnkebradleyj headuptiltdoesnotenhanceprostatetumorperfusionoroxygenationinyoungrats