Cargando…
Investigation of microseismic signal denoising using an improved wavelet adaptive thresholding method
There are high- and low-frequency noise signals in a microseismic signal that can lead to the distortion and submersion of an effective waveform. At present, effectively removing high- and low-frequency noise without losing the effective signal of local waveform spikes remains a challenge. This work...
Autores principales: | Zhang, Zhen, Ye, Yicheng, Luo, Binyu, Chen, Guan, Wu, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789042/ https://www.ncbi.nlm.nih.gov/pubmed/36564455 http://dx.doi.org/10.1038/s41598-022-26576-2 |
Ejemplares similares
-
Microseismic Time Delay Estimation Method Based on Continuous Wavelet
por: Du, Cunpeng, et al.
Publicado: (2022) -
Research on BOLD-fMRI Data Denoising Based on Bayesian Estimation and Adaptive Wavelet Threshold
por: Jian, Zini, et al.
Publicado: (2021) -
Denoising Non-Stationary Signals via Dynamic Multivariate Complex Wavelet Thresholding
por: Raath, Kim C., et al.
Publicado: (2023) -
The Denoising Method for Transformer Partial Discharge Based on the Whale VMD Algorithm Combined with Adaptive Filtering and Wavelet Thresholding
por: Wu, Zhongdong, et al.
Publicado: (2023) -
Application of translation wavelet transform with new threshold function in pulse wave signal denoising
por: Zhang, Jun, et al.
Publicado: (2023)