Cargando…
Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks
The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable advanced material analysis including composition analyses and elemental quantifications. The development of the parallel EELS instrument and fast, sensitive detectors have greatly improved the acquisition spe...
Autores principales: | Kong, Lingli, Ji, Zhengran, Xin, Huolin L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789080/ https://www.ncbi.nlm.nih.gov/pubmed/36564412 http://dx.doi.org/10.1038/s41598-022-25870-3 |
Ejemplares similares
-
Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy
por: Annys, Arno, et al.
Publicado: (2023) -
MnEdgeNet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2,3 edges without reference and calibration
por: Ji, Zhengran, et al.
Publicado: (2023) -
Ultrafast core-loss spectroscopy in four-dimensional electron microscopy
por: van der Veen, Renske M., et al.
Publicado: (2015) -
Electron energy-loss spectroscopy in the electron microscope
por: Egerton, Ray F
Publicado: (1995) -
Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy
por: Kiyohara, Shin, et al.
Publicado: (2018)