Cargando…
In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models
In silico profiling is used in identification of active compounds and guide rational use of traditional medicines. Previous studies on Ethiopian indigenous aloes focused on documentation of phytochemical compositions and traditional uses. In this study, ADMET and drug-likeness properties of phytoche...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789083/ https://www.ncbi.nlm.nih.gov/pubmed/36564437 http://dx.doi.org/10.1038/s41598-022-26446-x |
Sumario: | In silico profiling is used in identification of active compounds and guide rational use of traditional medicines. Previous studies on Ethiopian indigenous aloes focused on documentation of phytochemical compositions and traditional uses. In this study, ADMET and drug-likeness properties of phytochemicals from Ethiopian indigenous aloes were evaluated, and pharmacophore-based profiling was done using Discovery Studio to predict therapeutic targets. The targets were examined using KEGG pathway, gene ontology and network analysis. Using random-walk with restart algorithm, network propagation was performed in CODA network to find diseases associated with the targets. As a result, 82 human targets were predicted and found to be involved in several molecular functions and biological processes. The targets also were linked to various cancers and diseases of immune system, metabolism, neurological system, musculoskeletal system, digestive system, hematologic, infectious, mouth and dental, and congenital disorder of metabolism. 207 KEGG pathways were enriched with the targets, and the main pathways were metabolism of steroid hormone biosynthesis, lipid and atherosclerosis, chemical carcinogenesis, and pathways in cancer. In conclusion, in silico target fishing and network analysis revealed therapeutic activities of the phytochemicals, demonstrating that Ethiopian indigenous aloes exhibit polypharmacology effects on numerous genes and signaling pathways linked to many diseases. |
---|