Cargando…
Optical gain reduction caused by nonrelevant subbands in narrow-period terahertz quantum cascade laser designs
The recent designs of terahertz quantum cascade lasers usually employ the short periodic length and also the tall barriers for high-temperature operation. In this work, the effect of high-energy lying non-relevant subbands is studied based on nonequilibrium Green’s function formalisms model, demonst...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789129/ https://www.ncbi.nlm.nih.gov/pubmed/36564403 http://dx.doi.org/10.1038/s41598-022-25139-9 |
Sumario: | The recent designs of terahertz quantum cascade lasers usually employ the short periodic length and also the tall barriers for high-temperature operation. In this work, the effect of high-energy lying non-relevant subbands is studied based on nonequilibrium Green’s function formalisms model, demonstrating those subbands are probable to play a minor role on the population inversion, but play a major role on the optical gain at high temperatures. The phenomenon can be ascribed to the appearance of leakages crossing neighboring periods via sequential resonant tunneling, and those leakages are inherently created by the specific features of the two-well configuration in this design that the phonon well should be wide enough for performing the phonon scattering to depopulate the lower-laser subband. The narrower periodic length design can strengthen this inter-period leakage. A parasitic absorption between the first high-lying nonrelevant subbands from two laser wells can closely overlap the gain shape and thus significantly reduce the peak gain. |
---|