Cargando…
A network approach for low dimensional signatures from high throughput data
One of the main objectives of high-throughput genomics studies is to obtain a low-dimensional set of observables—a signature—for sample classification purposes (diagnosis, prognosis, stratification). Biological data, such as gene or protein expression, are commonly characterized by an up/down regula...
Autores principales: | Curti, Nico, Levi, Giuseppe, Giampieri, Enrico, Castellani, Gastone, Remondini, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789141/ https://www.ncbi.nlm.nih.gov/pubmed/36564421 http://dx.doi.org/10.1038/s41598-022-25549-9 |
Ejemplares similares
-
Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization
por: Squadrani, Lorenzo, et al.
Publicado: (2022) -
Impact of concurrency on the performance of a whole exome sequencing pipeline
por: Dall’Olio, Daniele, et al.
Publicado: (2021) -
Correction to: Impact of concurrency on the performance of a whole exome sequencing pipeline
por: Dall’Olio, Daniele, et al.
Publicado: (2021) -
Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules
por: Bersanelli, Matteo, et al.
Publicado: (2016) -
WISDoM: Characterizing Neurological Time Series With the Wishart Distribution
por: Mengucci, Carlo, et al.
Publicado: (2021)