Cargando…
Geography, taxonomy, and ecological guild: Factors impacting freshwater macroinvertebrate gut microbiomes
Despite their diversity, global distribution, and apparent effects on host biology, the rules of life that govern variation in microbiomes among host species remain unclear, particularly in freshwater organisms. In this study, we sought to assess whether geographic location, taxonomy (order, family,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789321/ https://www.ncbi.nlm.nih.gov/pubmed/36582772 http://dx.doi.org/10.1002/ece3.9663 |
Sumario: | Despite their diversity, global distribution, and apparent effects on host biology, the rules of life that govern variation in microbiomes among host species remain unclear, particularly in freshwater organisms. In this study, we sought to assess whether geographic location, taxonomy (order, family, and genus), or functional feeding group (FFG) designations would best explain differences in the gut microbiome composition among macroinvertebrates sampled across 10 National Ecological Observatory Network's (NEON) freshwater stream sites in the United States. Subsequently, we compared the beta diversity of microbiomes among locations, taxonomy (order, family, and genus), and FFGs in a single statistical model to account for variation within the source microbial community and the types of macroinvertebrates sampled across locations. We determined significant differences in community composition among macroinvertebrate orders, families, genera, and FFGs. Differences in microbiome compositions were underscored by different bacterial ASVs that were differentially abundant among variables (four bacterial ASVs across the 10 NEON sites, 43 ASVs among the macroinvertebrate orders, and 18 bacterial ASVs differing among the five FFGs). Analyses of variations in microbiome composition using the Bray–Curtis distance matric revealed FFGs as the dominant source of variation (mean standard deviation of 0.8), followed by stream site (mean standard deviation of 0.5), and finally family and genus (mean standard deviation of 0.3 each). Our findings revealed a principal role for FFG classification in insect gut microbiome beta diversity with additional roles for geographic distribution and taxonomy. |
---|