Cargando…
Spatial orientation during gondola centrifugation with subjects upright versus supine: Evidence for Gestalt psychological mechanisms in vestibular perception
BACKGROUND: Recent theories suggest that perception of complex self-motion is governed by familiarity of the motion pattern as a whole in 3D. OBJECTIVE: To explore how familiarity determines the perceived angular displacement with respect to the Earth during a simulated coordinated turn in a gondola...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789483/ https://www.ncbi.nlm.nih.gov/pubmed/33646191 http://dx.doi.org/10.3233/VES-201527 |
Sumario: | BACKGROUND: Recent theories suggest that perception of complex self-motion is governed by familiarity of the motion pattern as a whole in 3D. OBJECTIVE: To explore how familiarity determines the perceived angular displacement with respect to the Earth during a simulated coordinated turn in a gondola centrifuge. METHOD: The centrifuge was accelerated to 2G (gondola displacement 60°) within 12.5 s. Using visual indicators in darkness, responses to the gondola displacement were recorded with subjects (n = 10) in two positions: sitting-upright, facing-forward versus lying-supine, feet-forwards. Each subject underwent 2×2 6-minute runs. RESULT: When upright, subjects indicated a tilt of initially 18.8±11.3°, declining with T = 66±37 s. In the supine position (subject’s yaw plane coinciding with the plane of gondola displacement) the indicated displacement was negligible (–0.3±4.8°). CONCLUSION: Since the canal system is most responsive to stimuli in yaw, these findings are difficult to explain by bottom-up models. Rather, the motion pattern during acceleration would be recognized as a familiar or meaningful whole (entering a co-ordinated turn) only when the subject is upright. Presumably, the degree of familiarity is reflected in the subject’s ability to discern and estimate a single stimulus component. Findings are discussed in connection with human factors in aviation and the principles of Gestalt psychology. |
---|