Cargando…

Comparison of proteins with anti-influenza virus effects in parotid and submandibular-sublingual saliva in humans

BACKGROUND: Saliva possesses antiviral activity, with submandibular-sublingual (SMSL) saliva having higher antiviral activity than parotid saliva. Various salivary proteins have inactivating effects on influenza A virus (IAV), but the detailed relationship between antiviral proteins and salivary ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Kenkichi, Yamamoto, Shinji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789508/
https://www.ncbi.nlm.nih.gov/pubmed/36566172
http://dx.doi.org/10.1186/s12903-022-02686-1
Descripción
Sumario:BACKGROUND: Saliva possesses antiviral activity, with submandibular-sublingual (SMSL) saliva having higher antiviral activity than parotid saliva. Various salivary proteins have inactivating effects on influenza A virus (IAV), but the detailed relationship between antiviral proteins and salivary anti-IAV activities in the parotid and SMSL glands is unknown. Here, to identify salivary proteins with anti-IAV activity, salivary proteins from parotid and SMSL glands were identified, quantified, and compared using liquid chromatography-mass spectrometry. METHODS: Twelve healthy male volunteers participated in the study. Parotid and SMSL saliva was collected by suction and collection devices. We assessed anti-IAV activities, protein concentrations, and protein-bound sialic acid concentrations in parotid and SMSL saliva. RESULTS: SMSL had significantly higher anti-IAV activity than parotid saliva. SMSL also had higher concentrations of glycoproteins, such as mucin 5B and mucin 7, protein-bound sialic acid, cystatins, and lysozyme C, compared with parotid saliva. Salivary mucin 5B and mucin 7 concentrations significantly positively correlated with the salivary protein-bound sialic acid concentration. Salivary anti-IAV activity significantly positively correlated with protein-bound sialic acid, mucin 5B, mucin 7, cystatin-C, -S, and -SN concentrations. CONCLUSION: Salivary mucins, cystatins, and lysozyme C contribute to the high anti-IAV activity of SMSL saliva.