Cargando…

IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice

BACKGROUND: Interstitial lung disease, a common extra-articular complication of connective tissue disease, is characterized by progressive and irreversible pulmonary inflammation and fibrosis, which causes significant mortality. IL-22 shows a potential in regulating chronic inflammation and possibly...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Ziye, Dou, Wencan, Zhang, Kexin, Duan, Lili, Zhou, Dongmei, Yin, Songlou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789559/
https://www.ncbi.nlm.nih.gov/pubmed/36564791
http://dx.doi.org/10.1186/s13075-022-02977-6
Descripción
Sumario:BACKGROUND: Interstitial lung disease, a common extra-articular complication of connective tissue disease, is characterized by progressive and irreversible pulmonary inflammation and fibrosis, which causes significant mortality. IL-22 shows a potential in regulating chronic inflammation and possibly plays an anti-fibrotic role by protecting epithelial cells. However, the detailed effects and underlying mechanisms are still unclear. In this study, we explored the impact of IL-22 on pulmonary fibrosis both in vivo and in vitro. METHODS: To induce pulmonary fibrosis, wild-type mice and IL-22 knockout mice were intratracheally injected with bleomycin followed by treatments with recombinant IL-22 or IL-17A neutralizing antibody. We investigated the role of IL-22 on bleomycin-induced pulmonary fibrosis and the mechanism in the possible interaction between IL-22 and IL-17A. Fibrosis-related genes were detected using RT-qPCR, western blot, and immunofluorescence. Inflammatory and fibrotic changes were assessed based on histological features. We also used A549 human alveolar epithelial cells, NIH/3T3 mouse fibroblast cells, and primary mouse lung fibroblasts to study the impact of IL-22 on fibrosis in vitro. RESULTS: IL-22 knockout mice showed aggravated pulmonary fibrosis compared with wild-type mice, and injection of recombinant IL-22 decreased the severe fibrotic manifestations in IL-22 knockout mice. In cell culture assays, IL-22 decreased protein levels of Collagen I in A549 cells, NIH/3T3 cells, and primary mouse lung fibroblasts. IL-22 also reduced the protein level of Collagen I in NIH/3T3 cells which were co-cultured with T cells. Mechanistically, IL-22 reduced the Th17 cell proportion and IL-17A mRNA level in lung tissues, and treatment with an IL-17A neutralizing antibody alleviated the severe pulmonary fibrosis in IL-22 knockout mice. The IL-17A neutralizing antibody also reduced Collagen I expression in NIH/3T3 cells in vitro. Knockdown of IL-17A with siRNAs or administration of IL-22 in NIH/3T3 cells and MLFs decreased expression of Collagen I, an effect blocked by concurrent use of recombinant IL-17A. CONCLUSIONS: IL-22 mediated an anti-fibrogenesis effect in the bleomycin-induced pulmonary fibrosis model and this effect was associated with inhibition of IL-17A. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-022-02977-6.