Cargando…
Machine learning of plasma metabolome identifies biomarker panels for metabolic syndrome: findings from the China Suboptimal Health Cohort
BACKGROUND: Metabolic syndrome (MetS) has been proposed as a clinically identifiable high-risk state for the prediction and prevention of cardiovascular diseases and type 2 diabetes mellitus. As a promising “omics” technology, metabolomics provides an innovative strategy to gain a deeper understandi...
Autores principales: | Wang, Hao, Wang, Youxin, Li, Xingang, Deng, Xuan, Kong, Yuanyuan, Wang, Wei, Zhou, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789589/ https://www.ncbi.nlm.nih.gov/pubmed/36564831 http://dx.doi.org/10.1186/s12933-022-01716-0 |
Ejemplares similares
-
Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using (1)H-NMR-based metabolomics profiles
por: Tian, Jun-sheng, et al.
Publicado: (2016) -
China suboptimal health cohort study: rationale, design and baseline characteristics
por: Wang, Youxin, et al.
Publicado: (2016) -
Untargeted plasma metabolome identifies biomarkers in patients with extracranial arteriovenous malformations
por: Fan, Xueqiang, et al.
Publicado: (2023) -
Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics
por: Zhou, Huihui, et al.
Publicado: (2019) -
Combining Machine Learning and Metabolomics to Identify Weight Gain Biomarkers
por: Dias-Audibert, Flávia Luísa, et al.
Publicado: (2020)