Cargando…
Automated lung ultrasound image assessment using artificial intelligence to identify fluid overload in dialysis patients
BACKGROUND: Fluid assessment is challenging, and fluid overload poses a significant problem among dialysis patients, with pulmonary oedema being the most serious consequence. Our study aims to develop a simple objective fluid assessment strategy using lung ultrasound (LUS) and artificial intelligenc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789672/ https://www.ncbi.nlm.nih.gov/pubmed/36564742 http://dx.doi.org/10.1186/s12882-022-03044-7 |
Sumario: | BACKGROUND: Fluid assessment is challenging, and fluid overload poses a significant problem among dialysis patients, with pulmonary oedema being the most serious consequence. Our study aims to develop a simple objective fluid assessment strategy using lung ultrasound (LUS) and artificial intelligence (AI) to assess the fluid status of dialysis patients. METHODS: This was a single-centre study of 76 hemodialysis and peritoneal dialysis patients carried out between July 2020 to May 2022. The fluid status of dialysis patients was assessed via a simplified 8-point LUS method using a portable handheld ultrasound device (HHUSD), clinical examination and bioimpedance analysis (BIA). The primary outcome was the performance of 8-point LUS using a portable HHUSD in diagnosing fluid overload compared to physical examination and BIA. The secondary outcome was to develop and validate a novel AI software program to quantify B-line count and assess the fluid status of dialysis patients. RESULTS: Our study showed a moderate correlation between LUS B-line count and fluid overload assessed by clinical examination (r = 0.475, p < 0.001) and BIA (r = 0.356. p < 0.001). The use of AI to detect B-lines on LUS in our study for dialysis patients was shown to have good agreement with LUS B lines observed by physicians; (r = 0.825, p < 0.001) for the training dataset and (r = 0.844, p < 0.001) for the validation dataset. CONCLUSION: Our study confirms that 8-point LUS using HHUSD, with AI-based detection of B lines, can provide clinically useful information on the assessment of hydration status and diagnosis of fluid overload for dialysis patients in a user-friendly and time-efficient way. |
---|