Cargando…
Li–Yau inequalities for the Helfrich functional and applications
We prove a general Li–Yau inequality for the Helfrich functional where the spontaneous curvature enters with a singular volume type integral. In the physically relevant cases, this term can be converted into an explicit energy threshold that guarantees embeddedness. We then apply our result to the s...
Autores principales: | Rupp, Fabian, Scharrer, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789940/ https://www.ncbi.nlm.nih.gov/pubmed/36578357 http://dx.doi.org/10.1007/s00526-022-02381-7 |
Ejemplares similares
-
Inhomogeneous Canham–Helfrich Abscission in Catenoid Necks under Critical Membrane Mosaicity
por: Santiago, José Antonio, et al.
Publicado: (2023) -
Modular Calabi-Yau threefolds
por: Meyer, Christian
Publicado: (2005) -
Sphere Partition Function of Calabi–Yau GLSMs
por: Erkinger, David, et al.
Publicado: (2022) -
Geodesics in the extended Kähler cone of Calabi-Yau threefolds
por: Brodie, Callum R., et al.
Publicado: (2021) -
The Calabi-Yau Hypersurface Landscape
por: Demirtas, Mehmet
Publicado: (2019)