Cargando…
Automatic generation of structural geometric digital twins from point clouds
A geometric digital twin (gDT) model capable of leveraging acquired 3D geometric data plays a vital role in digitizing the process of structural health monitoring. This study presents a framework for generating and updating digital twins of existing buildings by inferring semantic information from a...
Autores principales: | Mirzaei, Kaveh, Arashpour, Mehrdad, Asadi, Ehsan, Masoumi, Hossein, Li, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789981/ https://www.ncbi.nlm.nih.gov/pubmed/36566317 http://dx.doi.org/10.1038/s41598-022-26307-7 |
Ejemplares similares
-
A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud
por: Li, Siyuan, et al.
Publicado: (2022) -
ResSANet: Learning Geometric Information for Point Cloud Processing
por: Zhu, Xiaojun, et al.
Publicado: (2021) -
Growth parameter acquisition and geometric point cloud completion of lettuce
por: Lou, Mingzhao, et al.
Publicado: (2022) -
Facial Expression Recognition with Geometric Scattering on 3D Point Clouds
por: He, Yi, et al.
Publicado: (2022) -
Construction and Maintenance of Building Geometric Digital Twins: State of the Art Review
por: Drobnyi, Viktor, et al.
Publicado: (2023)