Cargando…
Leveraging image complexity in macro-level neural network design for medical image segmentation
Recent progress in encoder–decoder neural network architecture design has led to significant performance improvements in a wide range of medical image segmentation tasks. However, state-of-the-art networks for a given task may be too computationally demanding to run on affordable hardware, and thus...
Autores principales: | Khan, Tariq M., Naqvi, Syed S., Meijering, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790020/ https://www.ncbi.nlm.nih.gov/pubmed/36566313 http://dx.doi.org/10.1038/s41598-022-26482-7 |
Ejemplares similares
-
Deep Neural Networks for Medical Image Segmentation
por: Malhotra, Priyanka, et al.
Publicado: (2022) -
Retracted: Deep Neural Networks for Medical Image Segmentation
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
por: Noothout, Julia M. H., et al.
Publicado: (2022) -
Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network
por: Zafar, Kashan, et al.
Publicado: (2020) -
Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search
por: Zhu, Yanming, et al.
Publicado: (2021)