Cargando…
Quantifying the role of variability in future intensification of heat extremes
Heat extremes have grown disproportionately since the advent of industrialization and are expected to intensify further under unabated greenhouse warming, spreading unevenly across the globe. However, amplification mechanisms are highly uncertain because of the complex interplay between regional phy...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790021/ https://www.ncbi.nlm.nih.gov/pubmed/36566208 http://dx.doi.org/10.1038/s41467-022-35571-0 |
Sumario: | Heat extremes have grown disproportionately since the advent of industrialization and are expected to intensify further under unabated greenhouse warming, spreading unevenly across the globe. However, amplification mechanisms are highly uncertain because of the complex interplay between regional physical responses to human forcing and the statistical properties of atmospheric temperatures. Here, focusing on the latter, we explain how and to what extent the leading moments of thermal distributions sway the future trajectories of heat extremes. Crucially, we show that daily temperature variability is the key to understanding global patterns of change in the frequency and severity of the extremes and their exacerbation in many places. Variability accounts for at least half of the highly differential regional sensitivities and may well outweigh the background warming. These findings provide fundamental insights for assessing the reliability of climate models and improving their future projections. |
---|