Cargando…

Differentiation of Human Adipose-Derived Mesenchymal Stromal/Stem Cells into Insulin-Producing Cells with A Single Tet-Off Lentiviral Vector System

OBJECTIVE: Human adipose-derived mesenchymal stromal/stem cells (hASC) constitute an attractive source of stem cells for cell-based therapies in regenerative medicine and tissue engineering as they are easy to acquire from lipoaspirate, expansion, and genetic modification ex vivo. The combination of...

Descripción completa

Detalles Bibliográficos
Autores principales: Moriyama, Hiroyuki, Moriyama, Mariko, Ozawa, Toshiyuki, Tsuruta, Daisuke, Hayakawa, Takao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royan Institute 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790068/
https://www.ncbi.nlm.nih.gov/pubmed/36527342
http://dx.doi.org/10.22074/CELLJ.2022.557533.1063
Descripción
Sumario:OBJECTIVE: Human adipose-derived mesenchymal stromal/stem cells (hASC) constitute an attractive source of stem cells for cell-based therapies in regenerative medicine and tissue engineering as they are easy to acquire from lipoaspirate, expansion, and genetic modification ex vivo. The combination of Pdx-1, MafA, and NeuroD1 has been indicated to possess the ability to reprogram various types of cells into insulin-producing cells. The aim of this study is to investigate whether MafA and NeuroD1 would cooperate with Pdx-1 in the differentiation of hASC into insulin-producing cells. MATERIALS AND METHODS: In this experimental study, we generated polycistronic expression vectors expressing Pdx1 and MafA/NeuroD1 with a reporter from a human EF-1α promoter using 2A peptides in a single tet-off lentiviral vector system. Briefly, hASC were transduced with the lentiviral vectors and allowed to differentiate into insulin-producing cells in vitro and in vivo. Thereafter, RNA expression, dithizone staining, and immunofluorescent analysis were conducted. RESULTS: Cleaved transcriptional factors from a single tet-off lentiviral vector were functionally equivalent to their native proteins and strictly regulated by doxycycline (Dox). Insulin gene expression in hASC transduced with Pdx1, Pdx1/ MafA, and Pdx1/NeuroD1 in differentiation medium were successfully increased by 1.89 ± 0.39, 4.81 ± 0.98, 5.51 ± 0.63, respectively, compared to venus-transduced, control hASC. These cells could form dithizone-positive cell clusters in vitro and were found to express insulin in vivo. CONCLUSION: Using our single tet-off lentiviral vector system, Pdx-1 and MafA/NeuroD1 could be simultaneously expressed in the absence of Dox. Further, this system allowed the differentiation of hASC into insulin-producing cells.