Cargando…
New advances in prediction and surveillance of preeclampsia: role of machine learning approaches and remote monitoring
Preeclampsia, a multisystem disorder in pregnancy, is still one of the main causes of maternal morbidity and mortality. Due to a lack of a causative therapy, an accurate prediction of women at risk for the disease and its associated adverse outcomes is of utmost importance to tailor care. In the pas...
Autores principales: | Hackelöer, Max, Schmidt, Leon, Verlohren, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790089/ https://www.ncbi.nlm.nih.gov/pubmed/36566477 http://dx.doi.org/10.1007/s00404-022-06864-y |
Ejemplares similares
-
sFlt-1/PlGF ratio for prediction of preeclampsia in clinical routine: A pragmatic real-world analysis of healthcare resource utilisation
por: Dathan-Stumpf, Anne, et al.
Publicado: (2022) -
A remote healthcare monitoring framework for diabetes prediction using machine learning
por: Ramesh, Jayroop, et al.
Publicado: (2021) -
REMOTE: Accelerator control with advanced algorithms and Machine Learning
por: Kain, Verena
Publicado: (2022) -
Predictive Performance of Machine Learning-Based Methods for the Prediction of Preeclampsia—A Prospective Study
por: Melinte-Popescu, Alina-Sinziana, et al.
Publicado: (2023) -
UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring
por: Parsons, Mark, et al.
Publicado: (2018)