Cargando…
Perfect sampling from spatial mixing
We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like [Formula: see text] , our algorithm achieves l...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790483/ https://www.ncbi.nlm.nih.gov/pubmed/36589253 http://dx.doi.org/10.1002/rsa.21079 |
Sumario: | We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like [Formula: see text] , our algorithm achieves linear running time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best perfect samplers for colorings and for monomer‐dimer models in such graphs. |
---|