Cargando…
Impact of multiple small and persistent threats on extinction risk
Many species may face multiple distinct and persistent drivers of extinction risk, yet theoretical and empirical studies tend to focus on the single largest driver. This means that existing approaches potentially underestimate and mischaracterize future risks to biodiversity. We synthesized existing...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790556/ https://www.ncbi.nlm.nih.gov/pubmed/35212024 http://dx.doi.org/10.1111/cobi.13901 |
Sumario: | Many species may face multiple distinct and persistent drivers of extinction risk, yet theoretical and empirical studies tend to focus on the single largest driver. This means that existing approaches potentially underestimate and mischaracterize future risks to biodiversity. We synthesized existing knowledge on how multiple drivers of extinction can interact to influence a species’ overall extinction probability in a probabilistic model of extinction risk that incorporated the impacts of multiple drivers of extinction risk, their interactions, and their accumulative effects through time. We then used this model framework to explore how different threats, interactions between them, and time trends may affect a species’ overall extinction probability. Multiple small threats together had potential to pose a large cumulative extinction risk; for example, 10 individual threats posed a 1% extinction risk each and cumulatively posed a 9.7% total extinction risk. Interactions among drivers resulted in escalated risk in some cases, and persistent threats with a small (1%) extinction risk each decade ultimately posed large extinction risk over 100 (9.6% total extinction risk) to 200 years (18.2% total extinction risk). By estimating long‐term extinction risk posed by several different factors and their interactions, this approach provides a framework to identify drivers of extinction risk that could be proactively targeted to help prevent species currently of least concern from becoming threatened with extinction. |
---|