Cargando…
C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury
BACKGROUND AND AIMS: In extrahepatic bile duct (EHBD) cholangiopathies, including primary sclerosing cholangitis, a reactive cholangiocyte phenotype is associated with inflammation and epithelial hyperproliferation. The signaling pathways involved in EHBD injury response are poorly understood. In th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790600/ https://www.ncbi.nlm.nih.gov/pubmed/35388502 http://dx.doi.org/10.1002/hep.32492 |
_version_ | 1784859215269986304 |
---|---|
author | Mohamad Zaki, Nureen H. Shiota, Junya Calder, Ashley N. Keeley, Theresa M. Allen, Benjamin L. Nakao, Kazuhiko Samuelson, Linda C. Razumilava, Nataliya |
author_facet | Mohamad Zaki, Nureen H. Shiota, Junya Calder, Ashley N. Keeley, Theresa M. Allen, Benjamin L. Nakao, Kazuhiko Samuelson, Linda C. Razumilava, Nataliya |
author_sort | Mohamad Zaki, Nureen H. |
collection | PubMed |
description | BACKGROUND AND AIMS: In extrahepatic bile duct (EHBD) cholangiopathies, including primary sclerosing cholangitis, a reactive cholangiocyte phenotype is associated with inflammation and epithelial hyperproliferation. The signaling pathways involved in EHBD injury response are poorly understood. In this study, we investigated the role of Hedgehog (HH) signaling and its downstream effectors in controlling biliary proliferation and inflammation after EHBD injury. APPROACH AND RESULTS: Using mouse bile duct ligation as an acute EHBD injury model, we used inhibitory paradigms to uncover mechanisms promoting the proliferative response. HH signaling was inhibited genetically in Gli1(−/−) mice or by treating wild‐type mice with LDE225. The role of neutrophils was tested using chemical (SB225002) and biological (lymphocyte antigen 6 complex locus G6D [Ly6G] antibodies) inhibitors of neutrophil recruitment. The cellular response was defined through morphometric quantification of proliferating cells and CD45+ and Ly6G+ immune cell populations. Key signaling component expression was measured and localized to specific EHBD cellular compartments by in situ hybridization, reporter strain analysis, and immunohistochemistry. Epithelial cell proliferation peaked 24 h after EHBD injury, preceded stromal cell proliferation, and was associated with neutrophil influx. Indian HH ligand expression in the biliary epithelium rapidly increased after injury. HH‐responding cells and neutrophil chemoattractant C‐X‐C motif chemokine ligand 1 (CXCL1) expression mapped to EHBD stromal cells. Inhibition of HH signaling blocked CXCL1 induction, diminishing neutrophil recruitment and the biliary proliferative response to injury. Directly targeting neutrophils by inhibition of the CXCL1/C‐X‐C motif chemokine receptor 2/Ly6G signaling axis also decreased biliary proliferation. CONCLUSIONS: HH‐regulated CXCL1 orchestrates the early inflammatory response and biliary proliferation after EHBD injury through complex cellular crosstalk. |
format | Online Article Text |
id | pubmed-9790600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97906002022-12-28 C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury Mohamad Zaki, Nureen H. Shiota, Junya Calder, Ashley N. Keeley, Theresa M. Allen, Benjamin L. Nakao, Kazuhiko Samuelson, Linda C. Razumilava, Nataliya Hepatology Original Articles BACKGROUND AND AIMS: In extrahepatic bile duct (EHBD) cholangiopathies, including primary sclerosing cholangitis, a reactive cholangiocyte phenotype is associated with inflammation and epithelial hyperproliferation. The signaling pathways involved in EHBD injury response are poorly understood. In this study, we investigated the role of Hedgehog (HH) signaling and its downstream effectors in controlling biliary proliferation and inflammation after EHBD injury. APPROACH AND RESULTS: Using mouse bile duct ligation as an acute EHBD injury model, we used inhibitory paradigms to uncover mechanisms promoting the proliferative response. HH signaling was inhibited genetically in Gli1(−/−) mice or by treating wild‐type mice with LDE225. The role of neutrophils was tested using chemical (SB225002) and biological (lymphocyte antigen 6 complex locus G6D [Ly6G] antibodies) inhibitors of neutrophil recruitment. The cellular response was defined through morphometric quantification of proliferating cells and CD45+ and Ly6G+ immune cell populations. Key signaling component expression was measured and localized to specific EHBD cellular compartments by in situ hybridization, reporter strain analysis, and immunohistochemistry. Epithelial cell proliferation peaked 24 h after EHBD injury, preceded stromal cell proliferation, and was associated with neutrophil influx. Indian HH ligand expression in the biliary epithelium rapidly increased after injury. HH‐responding cells and neutrophil chemoattractant C‐X‐C motif chemokine ligand 1 (CXCL1) expression mapped to EHBD stromal cells. Inhibition of HH signaling blocked CXCL1 induction, diminishing neutrophil recruitment and the biliary proliferative response to injury. Directly targeting neutrophils by inhibition of the CXCL1/C‐X‐C motif chemokine receptor 2/Ly6G signaling axis also decreased biliary proliferation. CONCLUSIONS: HH‐regulated CXCL1 orchestrates the early inflammatory response and biliary proliferation after EHBD injury through complex cellular crosstalk. John Wiley and Sons Inc. 2022-04-30 2022-10 /pmc/articles/PMC9790600/ /pubmed/35388502 http://dx.doi.org/10.1002/hep.32492 Text en © 2022 The Authors. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Mohamad Zaki, Nureen H. Shiota, Junya Calder, Ashley N. Keeley, Theresa M. Allen, Benjamin L. Nakao, Kazuhiko Samuelson, Linda C. Razumilava, Nataliya C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title | C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title_full | C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title_fullStr | C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title_full_unstemmed | C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title_short | C‐X‐C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
title_sort | c‐x‐c motif chemokine ligand 1 induced by hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790600/ https://www.ncbi.nlm.nih.gov/pubmed/35388502 http://dx.doi.org/10.1002/hep.32492 |
work_keys_str_mv | AT mohamadzakinureenh cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT shiotajunya cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT calderashleyn cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT keeleytheresam cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT allenbenjaminl cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT nakaokazuhiko cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT samuelsonlindac cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury AT razumilavanataliya cxcmotifchemokineligand1inducedbyhedgehogsignalingpromotesmouseextrahepaticbileductrepairafteracuteinjury |