Cargando…
Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury
AIM: To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). METHOD: This was a multicentre retrospective study of 40 inf...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790667/ https://www.ncbi.nlm.nih.gov/pubmed/35445398 http://dx.doi.org/10.1111/dmcn.15244 |
Sumario: | AIM: To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). METHOD: This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. RESULTS: We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual‐level prediction of unilateral CP was seen in the centro‐occipital spindles with an overall accuracy of 93%. An empiric cut‐off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. INTERPRETATION: Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury. WHAT THIS PAPER ADDS: Unilateral perinatal brain injury may affect the development of electroencephalogram (EEG) sleep spindles. Interhemispheric asymmetry in sleep spindles can be quantified with automated EEG analysis. Spindle power asymmetry can be a potential biomarker of unilateral cerebral palsy. |
---|