Cargando…

Capturing Dynamic Performance in a Cognitive Model: Estimating ACT‐R Memory Parameters With the Linear Ballistic Accumulator

The parameters governing our behavior are in constant flux. Accurately capturing these dynamics in cognitive models poses a challenge to modelers. Here, we demonstrate a mapping of ACT‐R's declarative memory onto the linear ballistic accumulator (LBA), a mathematical model describing a competit...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Velde, Maarten, Sense, Florian, Borst, Jelmer P., van Maanen, Leendert, van Rijn, Hedderik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790673/
https://www.ncbi.nlm.nih.gov/pubmed/35531959
http://dx.doi.org/10.1111/tops.12614
Descripción
Sumario:The parameters governing our behavior are in constant flux. Accurately capturing these dynamics in cognitive models poses a challenge to modelers. Here, we demonstrate a mapping of ACT‐R's declarative memory onto the linear ballistic accumulator (LBA), a mathematical model describing a competition between evidence accumulation processes. We show that this mapping provides a method for inferring individual ACT‐R parameters without requiring the modeler to build and fit an entire ACT‐R model. Existing parameter estimation methods for the LBA can be used, instead of the computationally expensive parameter sweeps that are traditionally done. We conduct a parameter recovery study to confirm that the LBA can recover ACT‐R parameters from simulated data. Then, as a proof of concept, we use the LBA to estimate ACT‐R parameters from an empirical dataset. The resulting parameter estimates provide a cognitively meaningful explanation for observed differences in behavior over time and between individuals. In addition, we find that the mapping between ACT‐R and LBA lends a more concrete interpretation to ACT‐R's latency factor parameter, namely as a measure of response caution. This work contributes to a growing movement towards integrating formal modeling approaches in cognitive science.