Cargando…

N6-methyladenosine (m6A) RNA methylation mediated by methyltransferase complex subunit WTAP regulates amelogenesis

N6-methyladenosine (m6A) RNA methylation, one of the most widespread posttranscriptional modifications in eukaryotes, plays crucial roles in various developmental processes. The m6A modification process is catalyzed by a methyltransferase complex that includes Wilms tumor 1-associated protein (WTAP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Furong, Zhu, Xueqin, Liu, Xiao, Chen, Hui, Wang, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791132/
https://www.ncbi.nlm.nih.gov/pubmed/36403857
http://dx.doi.org/10.1016/j.jbc.2022.102715
Descripción
Sumario:N6-methyladenosine (m6A) RNA methylation, one of the most widespread posttranscriptional modifications in eukaryotes, plays crucial roles in various developmental processes. The m6A modification process is catalyzed by a methyltransferase complex that includes Wilms tumor 1-associated protein (WTAP) as a key component. Whether the development of dental enamel is regulated by m6A RNA methylation in mammals remains unclear. Here, we reveal that WTAP is widely expressed from the early stage of tooth development. Specific inactivation of Wtap in mouse enamel epithelium by the Cre/loxp system leads to serious developmental defects in amelogenesis. In Wtap conditional KO mice, we determined that the differentiation of enamel epithelial cells into mature ameloblasts at the early stages of enamel development is affected. Mechanistically, loss of Wtap inhibits the expression of Sonic hedgehog (SHH), which plays an important role in the generation of ameloblasts from stem cells. Together, our findings provide new insights into the functional role of WTAP-mediated m6A methylation in amelogenesis in mammals.