Cargando…
Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment
Background: An early diagnosis model with clinical phenotype classification is key for the early identification and precise treatment of sepsis-associated acute respiratory distress syndrome (ARDS). This study aimed to: 1) build a machine learning diagnostic model for patients with sepsis-associated...
Autores principales: | Bai, Yu, Xia, Jingen, Huang, Xu, Chen, Shengsong, Zhan, Qingyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791185/ https://www.ncbi.nlm.nih.gov/pubmed/36579020 http://dx.doi.org/10.3389/fphys.2022.1050849 |
Ejemplares similares
-
Microarray Analysis Reveals the Changes in Circular RNA Expression and Molecular Mechanisms in Mice With Ventilator-Induced Lung Injury
por: Chen, Shengsong, et al.
Publicado: (2022) -
Rutin alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation
por: Chen, Shengsong, et al.
Publicado: (2023) -
IL35 attenuated LPS-induced acute lung injury by regulating macrophage polarization
por: Chen, Shengsong, et al.
Publicado: (2022) -
Identification of macrophage-related genes in sepsis-induced ARDS using bioinformatics and machine learning
por: Li, Qiuyue, et al.
Publicado: (2023) -
I, DOCTOR: The role of machine learning in phenotyping ARDS
por: Levine, Andrea R., et al.
Publicado: (2021)