Cargando…
Weakly supervised learning and interpretability for endometrial whole slide image diagnosis
Fully supervised learning for whole slide image–based diagnostic tasks in histopathology is problematic due to the requirement for costly and time-consuming manual annotation by experts. Weakly supervised learning that utilizes only slide-level labels during training is becoming more widespread as i...
Autores principales: | Mohammadi, Mahnaz, Cooper, Jessica, Arandelović, Ognjen, Fell, Christina, Morrison, David, Syed, Sheeba, Konanahalli, Prakash, Bell, Sarah, Bryson, Gareth, Harrison, David J, Harris-Birtill, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791308/ https://www.ncbi.nlm.nih.gov/pubmed/36281799 http://dx.doi.org/10.1177/15353702221126560 |
Ejemplares similares
-
Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence
por: Fell, Christina, et al.
Publicado: (2023) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022) -
Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images
por: Tsuneki, Masayuki, et al.
Publicado: (2022) -
Weakly-supervised tumor purity prediction from frozen H&E stained slides
por: Brendel, Matthew, et al.
Publicado: (2022) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Kanavati, Fahdi, et al.
Publicado: (2021)