Cargando…
Generative adversarial networks for detecting contamination events in water distribution systems using multi-parameter, multi-site water quality monitoring
Contamination events in water distribution networks (WDNs) can have a huge impact on water supply and public health; increasingly, online water quality sensors are deployed for real-time detection of contamination events. Machine learning has been used to integrate multivariate time series water qua...
Autores principales: | Li, Zilin, Liu, Haixing, Zhang, Chi, Fu, Guangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791317/ https://www.ncbi.nlm.nih.gov/pubmed/36578363 http://dx.doi.org/10.1016/j.ese.2022.100231 |
Ejemplares similares
-
A Low-Cost Multi-Parameter Water Quality Monitoring System
por: Alam, Arif Ul, et al.
Publicado: (2021) -
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Multi-Focus Image Fusion Based on Multi-Scale Generative Adversarial Network
por: Ma, Xiaole, et al.
Publicado: (2022) -
Water Cherenkov detector reconstruction by Generative Adversarial Neural networks
por: Grigolia, Giorgi
Publicado: (2021) -
Assessing Inhalation Exposures Associated with Contamination Events in Water Distribution Systems
por: Davis, Michael J., et al.
Publicado: (2016)