Cargando…
A mixed finite element discretisation of linear and nonlinear multivariate splines using the Laplacian penalty based on biorthogonal systems
We consider a mixed finite element method for a linear multivariate spline using the Laplacian penalty. Our discretisation is based on biorthogonal systems leading to a very simple and efficient finite element scheme. We also extend our approach to a nonlinear case and describe a split Bregman itera...
Autor principal: | Lamichhane, Bishnu P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791608/ https://www.ncbi.nlm.nih.gov/pubmed/36578293 http://dx.doi.org/10.1016/j.mex.2022.101962 |
Ejemplares similares
-
Biorthogonal wavelets and tight framelets from smoothed pseudo splines
por: Zhou, Jie, et al.
Publicado: (2017) -
Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods
por: Gwinner, J., et al.
Publicado: (2013) -
Adaptivity in Bayesian Inverse Finite Element Problems: Learning and Simultaneous Control of Discretisation and Sampling Errors
por: Kerfriden, Pierre, et al.
Publicado: (2019) -
Linear B-spline finite element method for the generalized diffusion equation with delay
por: Lubo, Gemeda Tolessa, et al.
Publicado: (2022) -
Laplacian‐P‐splines for Bayesian inference in the mixture cure model
por: Gressani, Oswaldo, et al.
Publicado: (2022)