Cargando…

PLUSPULS: A transcranial magnetic stimulator with extended pulse protocols

Transcranial magnetic stimulation (TMS) is increasingly applied in basic neuroscience while its field of usage for diagnosing and treating various neurological diseases broadens steadily. A TMS device generates a current pulse in the reach of several thousand ampére to produce a magnetic pulse which...

Descripción completa

Detalles Bibliográficos
Autores principales: Staat, Christoph, Gattinger, Norbert, Gleich, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791927/
https://www.ncbi.nlm.nih.gov/pubmed/36578972
http://dx.doi.org/10.1016/j.ohx.2022.e00380
Descripción
Sumario:Transcranial magnetic stimulation (TMS) is increasingly applied in basic neuroscience while its field of usage for diagnosing and treating various neurological diseases broadens steadily. A TMS device generates a current pulse in the reach of several thousand ampére to produce a magnetic pulse which induces an electric field around neurons. This electric field, if high enough to depolarize the neuron membrane, generates an action potential at the neuron which travels down the neurons connected to it. The PLUSPULS TMS generates this magnetic pulse by pre-charging a pulse capacitor [Formula: see text] with the voltage [Formula: see text] and connecting it with a stimulation coil [Formula: see text]. The oscillation of the resonance circuit is cut off after one period and is called a biphasic pulse. PLUSPULS is a high frequency stimulator with inter stimulus intervals (ISI) down to 1ms which enables different pulse protocols as paired pulse or quadri theta burst stimulation. A GUI on PC allows a flexible control of PLUSPULS with varying amplitudes and ISI in one burst. The modular hardware and the control via GUI on PC allows for an easier adjustment on requirements to come. The article provides design considerations, hardware, firmware and software to reconstruct a modular biphasic TMS with enhanced charging network to enable extended pulse protocols.