Cargando…

Cough Audio Analysis for COVID-19 Diagnosis

Humanity has suffered catastrophically due to the COVID-19 pandemic. One of the most reliable diagnoses of COVID-19 is RT-PCR (reverse-transcription polymer chain reaction) testing. This method, however, has its limitations. It is time consuming and requires scalability. This research work carries o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapoor, Teghdeep, Pandhi, Tanya, Gupta, Bharat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791965/
https://www.ncbi.nlm.nih.gov/pubmed/36589771
http://dx.doi.org/10.1007/s42979-022-01522-1
Descripción
Sumario:Humanity has suffered catastrophically due to the COVID-19 pandemic. One of the most reliable diagnoses of COVID-19 is RT-PCR (reverse-transcription polymer chain reaction) testing. This method, however, has its limitations. It is time consuming and requires scalability. This research work carries out a preliminary prognosis of COVID-19, which is scalable and less time consuming. The research carried out a competitive analysis of four machine-learning models namely, Multilayer Perceptron, Convolutional Neural Networks, Recurrent Neural Networks with Long Short-Term Memory, and VGG-19 with Support Vector Machines. Out of these models, Multilayer Perceptron outperformed with higher specificity of 94.5% and accuracy of 96.8%. The results show that Multilayer Perceptron was able to distinguish between positive and negative COVID-19 coughs by a robust feature embedding technique.