Cargando…
A Frobenius Norm Regularization Method for Convolutional Kernel Tensors in Neural Networks
The convolutional neural network is a very important model of deep learning. It can help avoid the exploding/vanishing gradient problem and improve the generalizability of a neural network if the singular values of the Jacobian of a layer are bounded around 1 in the training process. We propose a ne...
Autor principal: | Guo, Pei-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792232/ https://www.ncbi.nlm.nih.gov/pubmed/36579174 http://dx.doi.org/10.1155/2022/3277730 |
Ejemplares similares
-
Frobenius-norm-based measures of quantum coherence and asymmetry
por: Yao, Yao, et al.
Publicado: (2016) -
A generalization and an application of the arithmetic–geometric mean inequality for the Frobenius norm
por: Wu, Xuesha
Publicado: (2018) -
Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy
por: Wickstrøm, Kristoffer K., et al.
Publicado: (2023) -
Some sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism
por: Carpentieri, B, et al.
Publicado: (2000) -
Quasi-Frobenius rings
por: Nicholson, W K, et al.
Publicado: (2003)