Cargando…
Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792354/ https://www.ncbi.nlm.nih.gov/pubmed/36582443 http://dx.doi.org/10.1016/j.csbj.2022.11.060 |
_version_ | 1784859617438728192 |
---|---|
author | Vohryzek, Jakub Cabral, Joana Castaldo, Francesca Sanz-Perl, Yonatan Lord, Louis-David Fernandes, Henrique M. Litvak, Vladimir Kringelbach, Morten L. Deco, Gustavo |
author_facet | Vohryzek, Jakub Cabral, Joana Castaldo, Francesca Sanz-Perl, Yonatan Lord, Louis-David Fernandes, Henrique M. Litvak, Vladimir Kringelbach, Morten L. Deco, Gustavo |
author_sort | Vohryzek, Jakub |
collection | PubMed |
description | Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions. |
format | Online Article Text |
id | pubmed-9792354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-97923542022-12-28 Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling Vohryzek, Jakub Cabral, Joana Castaldo, Francesca Sanz-Perl, Yonatan Lord, Louis-David Fernandes, Henrique M. Litvak, Vladimir Kringelbach, Morten L. Deco, Gustavo Comput Struct Biotechnol J Review Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions. Research Network of Computational and Structural Biotechnology 2022-12-01 /pmc/articles/PMC9792354/ /pubmed/36582443 http://dx.doi.org/10.1016/j.csbj.2022.11.060 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Vohryzek, Jakub Cabral, Joana Castaldo, Francesca Sanz-Perl, Yonatan Lord, Louis-David Fernandes, Henrique M. Litvak, Vladimir Kringelbach, Morten L. Deco, Gustavo Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title | Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title_full | Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title_fullStr | Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title_full_unstemmed | Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title_short | Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling |
title_sort | dynamic sensitivity analysis: defining personalised strategies to drive brain state transitions via whole brain modelling |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792354/ https://www.ncbi.nlm.nih.gov/pubmed/36582443 http://dx.doi.org/10.1016/j.csbj.2022.11.060 |
work_keys_str_mv | AT vohryzekjakub dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT cabraljoana dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT castaldofrancesca dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT sanzperlyonatan dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT lordlouisdavid dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT fernandeshenriquem dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT litvakvladimir dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT kringelbachmortenl dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling AT decogustavo dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling |