Cargando…

Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling

Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques in...

Descripción completa

Detalles Bibliográficos
Autores principales: Vohryzek, Jakub, Cabral, Joana, Castaldo, Francesca, Sanz-Perl, Yonatan, Lord, Louis-David, Fernandes, Henrique M., Litvak, Vladimir, Kringelbach, Morten L., Deco, Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792354/
https://www.ncbi.nlm.nih.gov/pubmed/36582443
http://dx.doi.org/10.1016/j.csbj.2022.11.060
_version_ 1784859617438728192
author Vohryzek, Jakub
Cabral, Joana
Castaldo, Francesca
Sanz-Perl, Yonatan
Lord, Louis-David
Fernandes, Henrique M.
Litvak, Vladimir
Kringelbach, Morten L.
Deco, Gustavo
author_facet Vohryzek, Jakub
Cabral, Joana
Castaldo, Francesca
Sanz-Perl, Yonatan
Lord, Louis-David
Fernandes, Henrique M.
Litvak, Vladimir
Kringelbach, Morten L.
Deco, Gustavo
author_sort Vohryzek, Jakub
collection PubMed
description Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.
format Online
Article
Text
id pubmed-9792354
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-97923542022-12-28 Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling Vohryzek, Jakub Cabral, Joana Castaldo, Francesca Sanz-Perl, Yonatan Lord, Louis-David Fernandes, Henrique M. Litvak, Vladimir Kringelbach, Morten L. Deco, Gustavo Comput Struct Biotechnol J Review Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a “Dynamic Sensitivity Analysis” framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions. Research Network of Computational and Structural Biotechnology 2022-12-01 /pmc/articles/PMC9792354/ /pubmed/36582443 http://dx.doi.org/10.1016/j.csbj.2022.11.060 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Vohryzek, Jakub
Cabral, Joana
Castaldo, Francesca
Sanz-Perl, Yonatan
Lord, Louis-David
Fernandes, Henrique M.
Litvak, Vladimir
Kringelbach, Morten L.
Deco, Gustavo
Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title_full Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title_fullStr Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title_full_unstemmed Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title_short Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling
title_sort dynamic sensitivity analysis: defining personalised strategies to drive brain state transitions via whole brain modelling
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792354/
https://www.ncbi.nlm.nih.gov/pubmed/36582443
http://dx.doi.org/10.1016/j.csbj.2022.11.060
work_keys_str_mv AT vohryzekjakub dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT cabraljoana dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT castaldofrancesca dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT sanzperlyonatan dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT lordlouisdavid dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT fernandeshenriquem dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT litvakvladimir dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT kringelbachmortenl dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling
AT decogustavo dynamicsensitivityanalysisdefiningpersonalisedstrategiestodrivebrainstatetransitionsviawholebrainmodelling