Cargando…
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
In tasks involving the interpretation of medical images, suitably trained machine-learning models often exceed the performance of medical experts. Yet such a high-level of performance typically requires that the models be trained with relevant datasets that have been painstakingly annotated by exper...
Autores principales: | Tiu, Ekin, Talius, Ellie, Patel, Pujan, Langlotz, Curtis P., Ng, Andrew Y., Rajpurkar, Pranav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792370/ https://www.ncbi.nlm.nih.gov/pubmed/36109605 http://dx.doi.org/10.1038/s41551-022-00936-9 |
Ejemplares similares
-
Evaluating progress in automatic chest X-ray radiology report generation
por: Yu, Feiyang, et al.
Publicado: (2023) -
Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning
por: Harris, Cole, et al.
Publicado: (2008) -
Supervised and unsupervised language modelling in Chest X-Ray radiological reports
por: Drozdov, Ignat, et al.
Publicado: (2020) -
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Identification of Unannotated Small Genes in Salmonella
por: Baek, Jonghwan, et al.
Publicado: (2017)