Cargando…
Self-supervised and semi-supervised learning for road condition estimation from distributed road-side cameras
Monitoring road conditions, e.g., water build-up due to intense rainfall, plays a fundamental role in ensuring road safety while increasing resilience to the effects of climate change. Distributed cameras provide an easy and affordable alternative to instrumented weather stations, enabling diffused...
Autores principales: | Garcea, Fabio, Blanco, Giacomo, Croci, Alberto, Lamberti, Fabrizio, Mamone, Riccardo, Ricupero, Ruben, Morra, Lia, Allamano, Paola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792450/ https://www.ncbi.nlm.nih.gov/pubmed/36572701 http://dx.doi.org/10.1038/s41598-022-26180-4 |
Ejemplares similares
-
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Road Surface Damage Detection Using Fully Convolutional Neural Networks and Semi-Supervised Learning
por: Chun, Chanjun, et al.
Publicado: (2019) -
Multi-supervised bidirectional fusion network for road-surface condition recognition
por: Zhang, Hongbin, et al.
Publicado: (2023) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010)