Cargando…
An open access, machine learning pipeline for high-throughput quantification of cell morphology
Cell morphology is influenced by many factors and can be used as a phenotypic marker. Here we describe a machine-learning-based protocol for high-throughput morphological measurement of human fibroblasts using a standard fluorescence microscope and the pre-existing, open access software ilastik for...
Autores principales: | Welter, Emma M., Kosyk, Oksana, Zannas, Anthony S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792532/ https://www.ncbi.nlm.nih.gov/pubmed/36527712 http://dx.doi.org/10.1016/j.xpro.2022.101947 |
Ejemplares similares
-
Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts
por: Leung, Calvin S., et al.
Publicado: (2022) -
Prolonged Glucocorticoid Exposure Does Not Accelerate Telomere Shortening in Cultured Human Fibroblasts
por: Zannas, Anthony S., et al.
Publicado: (2020) -
High-throughput interrogation of immune responses using the Human Immune Profiling Pipeline
por: Wang, Guanning, et al.
Publicado: (2023) -
Quantification of drug-induced fractional killing using high-throughput microscopy
por: Inde, Zintis, et al.
Publicado: (2021) -
A high-throughput imaging and quantification pipeline for the EVOS imaging platform
por: Klimaj, Stefan Donovan, et al.
Publicado: (2020)