Cargando…

Antimicrobial resistance profile of Escherichia coli isolated from poultry litter

Antimicrobial resistance is a threat to animal and human health. As a commensal and zoonotic bacterium, Escherichia coli has the potential to be a pathogenic source of antimicrobial resistance. The purpose of this study aimed to investigate the antimicrobial resistance profile of E. coli isolated fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Khong, M.J., Snyder, A.M., Magnaterra, A.K., Young, M.M., Barbieri, N.L., Weimer, S.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792562/
https://www.ncbi.nlm.nih.gov/pubmed/36603238
http://dx.doi.org/10.1016/j.psj.2022.102305
Descripción
Sumario:Antimicrobial resistance is a threat to animal and human health. As a commensal and zoonotic bacterium, Escherichia coli has the potential to be a pathogenic source of antimicrobial resistance. The purpose of this study aimed to investigate the antimicrobial resistance profile of E. coli isolated from litter collected from pens in a broiler chicken experiment. E. coli was isolated from litter samples (n = 68 isolates) of 16 pens housing broilers to d 53 of age. Resistance to 10 antimicrobials was observed by disc diffusion. The presence of 23 antimicrobial and heavy metal resistance genes, O serogroups, and avian pathogenic E. coli (APEC-like) minimal predictor genes were identified through PCR. E. coli isolates presented the greatest resistance to cephalothin (54.4%), tetracycline (27.9%), streptomycin (29.4%), ampicillin (20.6%), colistin (13.2%), sulphonamides (8.8%), and imipenem (1.5%). Multidrug resistance to at least 3 antimicrobials was observed in 22.1% of isolates. The identified O-types of the E. coli isolates were O15, O75, O78, and O91. There was a greater likelihood that the genes groEL, aph(3)IA, silP, sull, aadA, qacEdelta1, iroN, ompTp, and hlyF were present in isolates that exhibited ampicillin resistance (P ≤ 0.05). There was a greater likelihood that the groEL gene was present in isolates resistant to ampicillin, colistin, tetracycline, sulphonamides, or cephalothin (P ≤ 0.05). Further characterizing E. coli antimicrobial resistance is essential and aids in developing effective solutions, thereby furthering the One Health objective.