Cargando…
Research on the identification and detection of field pests in the complex background based on the rotation detection algorithm
As a large agricultural and population country, China’s annual demand for food is significant. The crop yield will be affected by various natural disasters every year, and one of the most important factors affecting crops is the impact of insect pests. The key to solving the problem is to detect, id...
Autores principales: | Zhang, Wei, Xia, Xulu, Zhou, Guotao, Du, Jianming, Chen, Tianjiao, Zhang, Zhengyong, Ma, Xiangyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792778/ https://www.ncbi.nlm.nih.gov/pubmed/36582640 http://dx.doi.org/10.3389/fpls.2022.1011499 |
Ejemplares similares
-
Feature Refinement Method Based on the Two-Stage Detection Framework for Similar Pest Detection in the Field
por: Chen, Hongbo, et al.
Publicado: (2023) -
CMRD-Net: a deep learning-based Cnaphalocrocis medinalis damage symptom rotated detection framework for in-field survey
por: Chen, Tianjiao, et al.
Publicado: (2023) -
Prior knowledge auxiliary for few-shot pest detection in the wild
por: Wang, Xiaodong, et al.
Publicado: (2023) -
Field pest monitoring and forecasting system for pest control
por: Liu, Chengkang, et al.
Publicado: (2022) -
ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition
por: Wang, Fenmei, et al.
Publicado: (2022)