Cargando…

Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants

Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlyin...

Descripción completa

Detalles Bibliográficos
Autores principales: Orellana, Daniela, Machuca, Daniel, Ibeas, Miguel Angel, Estevez, José Manuel, Poupin, María Josefina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792790/
https://www.ncbi.nlm.nih.gov/pubmed/36583055
http://dx.doi.org/10.3389/fmicb.2022.1083270
_version_ 1784859709731241984
author Orellana, Daniela
Machuca, Daniel
Ibeas, Miguel Angel
Estevez, José Manuel
Poupin, María Josefina
author_facet Orellana, Daniela
Machuca, Daniel
Ibeas, Miguel Angel
Estevez, José Manuel
Poupin, María Josefina
author_sort Orellana, Daniela
collection PubMed
description Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria.
format Online
Article
Text
id pubmed-9792790
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97927902022-12-28 Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants Orellana, Daniela Machuca, Daniel Ibeas, Miguel Angel Estevez, José Manuel Poupin, María Josefina Front Microbiol Microbiology Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria. Frontiers Media S.A. 2022-12-13 /pmc/articles/PMC9792790/ /pubmed/36583055 http://dx.doi.org/10.3389/fmicb.2022.1083270 Text en Copyright © 2022 Orellana, Machucal, Ibeas, Estevez and Poupin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Orellana, Daniela
Machuca, Daniel
Ibeas, Miguel Angel
Estevez, José Manuel
Poupin, María Josefina
Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title_full Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title_fullStr Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title_full_unstemmed Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title_short Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants
title_sort plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in arabidopsis thaliana plants
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792790/
https://www.ncbi.nlm.nih.gov/pubmed/36583055
http://dx.doi.org/10.3389/fmicb.2022.1083270
work_keys_str_mv AT orellanadaniela plantgrowthpromotionbyproteobacterialstrainsdependsontheavailabilityofphosphorusandironinarabidopsisthalianaplants
AT machucadaniel plantgrowthpromotionbyproteobacterialstrainsdependsontheavailabilityofphosphorusandironinarabidopsisthalianaplants
AT ibeasmiguelangel plantgrowthpromotionbyproteobacterialstrainsdependsontheavailabilityofphosphorusandironinarabidopsisthalianaplants
AT estevezjosemanuel plantgrowthpromotionbyproteobacterialstrainsdependsontheavailabilityofphosphorusandironinarabidopsisthalianaplants
AT poupinmariajosefina plantgrowthpromotionbyproteobacterialstrainsdependsontheavailabilityofphosphorusandironinarabidopsisthalianaplants