Cargando…
Wnt antagonism without TGFβ induces rapid MSC chondrogenesis via increasing AJ interactions and restricting lineage commitment
Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem ce...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792887/ https://www.ncbi.nlm.nih.gov/pubmed/36582823 http://dx.doi.org/10.1016/j.isci.2022.105713 |
Sumario: | Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification toward smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions—key components of the adherens junctions (AJ)—and increasing cytoskeleton-mediated condensation. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin as an upstream regulator. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application. |
---|