Cargando…

Loss of glyoxalase 2 alters the glucose metabolism in zebrafish

Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions...

Descripción completa

Detalles Bibliográficos
Autores principales: Tabler, Christoph Tobias, Lodd, Elisabeth, Bennewitz, Katrin, Middel, Chiara Simone, Erben, Vanessa, Ott, Hannes, Poth, Tanja, Fleming, Thomas, Morgenstern, Jakob, Hausser, Ingrid, Sticht, Carsten, Poschet, Gernot, Szendroedi, Julia, Nawroth, Peter Paul, Kroll, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792892/
https://www.ncbi.nlm.nih.gov/pubmed/36535130
http://dx.doi.org/10.1016/j.redox.2022.102576
_version_ 1784859733894627328
author Tabler, Christoph Tobias
Lodd, Elisabeth
Bennewitz, Katrin
Middel, Chiara Simone
Erben, Vanessa
Ott, Hannes
Poth, Tanja
Fleming, Thomas
Morgenstern, Jakob
Hausser, Ingrid
Sticht, Carsten
Poschet, Gernot
Szendroedi, Julia
Nawroth, Peter Paul
Kroll, Jens
author_facet Tabler, Christoph Tobias
Lodd, Elisabeth
Bennewitz, Katrin
Middel, Chiara Simone
Erben, Vanessa
Ott, Hannes
Poth, Tanja
Fleming, Thomas
Morgenstern, Jakob
Hausser, Ingrid
Sticht, Carsten
Poschet, Gernot
Szendroedi, Julia
Nawroth, Peter Paul
Kroll, Jens
author_sort Tabler, Christoph Tobias
collection PubMed
description Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2(−/−) larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2(−/−) livers displayed a reduced hexose concentration and a reduced postprandial P70–S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2(−/−) skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2(−/−) zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.
format Online
Article
Text
id pubmed-9792892
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97928922022-12-28 Loss of glyoxalase 2 alters the glucose metabolism in zebrafish Tabler, Christoph Tobias Lodd, Elisabeth Bennewitz, Katrin Middel, Chiara Simone Erben, Vanessa Ott, Hannes Poth, Tanja Fleming, Thomas Morgenstern, Jakob Hausser, Ingrid Sticht, Carsten Poschet, Gernot Szendroedi, Julia Nawroth, Peter Paul Kroll, Jens Redox Biol Research Paper Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2(−/−) larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2(−/−) livers displayed a reduced hexose concentration and a reduced postprandial P70–S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2(−/−) skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2(−/−) zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2. Elsevier 2022-12-14 /pmc/articles/PMC9792892/ /pubmed/36535130 http://dx.doi.org/10.1016/j.redox.2022.102576 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Tabler, Christoph Tobias
Lodd, Elisabeth
Bennewitz, Katrin
Middel, Chiara Simone
Erben, Vanessa
Ott, Hannes
Poth, Tanja
Fleming, Thomas
Morgenstern, Jakob
Hausser, Ingrid
Sticht, Carsten
Poschet, Gernot
Szendroedi, Julia
Nawroth, Peter Paul
Kroll, Jens
Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title_full Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title_fullStr Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title_full_unstemmed Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title_short Loss of glyoxalase 2 alters the glucose metabolism in zebrafish
title_sort loss of glyoxalase 2 alters the glucose metabolism in zebrafish
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792892/
https://www.ncbi.nlm.nih.gov/pubmed/36535130
http://dx.doi.org/10.1016/j.redox.2022.102576
work_keys_str_mv AT tablerchristophtobias lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT loddelisabeth lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT bennewitzkatrin lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT middelchiarasimone lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT erbenvanessa lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT otthannes lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT pothtanja lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT flemingthomas lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT morgensternjakob lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT hausseringrid lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT stichtcarsten lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT poschetgernot lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT szendroedijulia lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT nawrothpeterpaul lossofglyoxalase2alterstheglucosemetabolisminzebrafish
AT krolljens lossofglyoxalase2alterstheglucosemetabolisminzebrafish