Cargando…
Editorial: Fruit detection and yield prediction on woody crops using data from unmanned aerial vehicles
Autores principales: | Torres-Sánchez, Jorge, Souza, Jefferson, di Gennaro, Salvatore Filippo, Mesas-Carrascosa, Francisco Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792991/ https://www.ncbi.nlm.nih.gov/pubmed/36582641 http://dx.doi.org/10.3389/fpls.2022.1112445 |
Ejemplares similares
-
Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery
por: Matese, Alessandro, et al.
Publicado: (2022) -
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping
por: Borra-Serrano, Irene, et al.
Publicado: (2015) -
Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives
por: Yang, Guijun, et al.
Publicado: (2017) -
Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis
por: Duan, Bo, et al.
Publicado: (2019) -
Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning
por: Bellis, Emily S., et al.
Publicado: (2022)