Cargando…
Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis
BACKGROUND: Medical researchers and clinicians have shown much interest in developing machine learning (ML) algorithms to detect/predict surgical site infections (SSIs). However, little is known about the overall performance of ML algorithms in predicting SSIs and how to improve the algorithm's...
Autores principales: | Wu, Guosong, Khair, Shahreen, Yang, Fengjuan, Cheligeer, Cheligeer, Southern, Danielle, Zhang, Zilong, Feng, Yuanchao, Xu, Yuan, Quan, Hude, Williamson, Tyler, Eastwood, Cathy A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793260/ https://www.ncbi.nlm.nih.gov/pubmed/36582918 http://dx.doi.org/10.1016/j.amsu.2022.104956 |
Ejemplares similares
-
Development of machine learning models for the detection of surgical site infections following total hip and knee arthroplasty: a multicenter cohort study
por: Wu, Guosong, et al.
Publicado: (2023) -
Decision algorithm for when to use the ICD-11 3-part model for healthcare harms
por: Eastwood, Cathy A., et al.
Publicado: (2022) -
Field testing a new ICD coding system: methods and early experiences with ICD-11 Beta Version 2018
por: Eastwood, Cathy A., et al.
Publicado: (2022) -
Validity of ICD-10 codes for COVID-19 patients with hospital admissions or ED visits in Canada: a retrospective cohort study
por: Wu, Guosong, et al.
Publicado: (2022) -
Training and experience of coding with the World Health Organization’s International Classification of Diseases, Eleventh Revision
por: Eastwood, Cathy A, et al.
Publicado: (2021)