Cargando…

Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering

Most single-cell RNA sequencing (scRNA-seq) analyses begin with cell clustering; thus, the clustering accuracy considerably impacts the validity of downstream analyses. In contrast with the abundance of clustering methods, the tools to assess the clustering accuracy are limited. We propose a new Clu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Jiyuan, Chan, Cliburn, Owzar, Kouros, Wang, Liuyang, Qin, Diyuan, Li, Qi-Jing, Xie, Jichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793368/
https://www.ncbi.nlm.nih.gov/pubmed/36575517
http://dx.doi.org/10.1186/s13059-022-02825-5
Descripción
Sumario:Most single-cell RNA sequencing (scRNA-seq) analyses begin with cell clustering; thus, the clustering accuracy considerably impacts the validity of downstream analyses. In contrast with the abundance of clustering methods, the tools to assess the clustering accuracy are limited. We propose a new Clustering Deviation Index (CDI) that measures the deviation of any clustering label set from the observed single-cell data. We conduct in silico and experimental scRNA-seq studies to show that CDI can select the optimal clustering label set. As a result, CDI also informs the optimal tuning parameters for any given clustering method and the correct number of cluster components. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02825-5.