Cargando…
Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering
Most single-cell RNA sequencing (scRNA-seq) analyses begin with cell clustering; thus, the clustering accuracy considerably impacts the validity of downstream analyses. In contrast with the abundance of clustering methods, the tools to assess the clustering accuracy are limited. We propose a new Clu...
Autores principales: | Fang, Jiyuan, Chan, Cliburn, Owzar, Kouros, Wang, Liuyang, Qin, Diyuan, Li, Qi-Jing, Xie, Jichun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793368/ https://www.ncbi.nlm.nih.gov/pubmed/36575517 http://dx.doi.org/10.1186/s13059-022-02825-5 |
Ejemplares similares
-
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
Boosting scRNA-seq data clustering by cluster-aware feature weighting
por: Li, Rui-Yi, et al.
Publicado: (2021)