Cargando…
Current status and future developments in predicting outcomes in radiation oncology
Advancements in data-driven technologies and the inclusion of information-rich multiomics features have significantly improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, challenges related to robust data modeling such as small sample size, l...
Autores principales: | Niraula, Dipesh, Cui, Sunan, Pakela, Julia, Wei, Lise, Luo, Yi, Ten Haken, Randall K, El Naqa, Issam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793488/ https://www.ncbi.nlm.nih.gov/pubmed/35867841 http://dx.doi.org/10.1259/bjr.20220239 |
Ejemplares similares
-
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2021) -
Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2023) -
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling
por: Luo, Yi, et al.
Publicado: (2019) -
A human-in-the-loop based Bayesian network approach to improve imbalanced radiation outcomes prediction for hepatocellular cancer patients with stereotactic body radiotherapy
por: Luo, Yi, et al.
Publicado: (2022)