Cargando…

Automated quantitative assessment of pediatric blunt hepatic trauma by deep learning-based CT volumetry

BACKGROUND: To develop an end-to-end deep learning method for automated quantitative assessment of pediatric blunt hepatic trauma based on contrast-enhanced computed tomography (CT). METHODS: This retrospective study included 170 children with blunt hepatic trauma between May 1, 2015, and August 30,...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Shungen, Zhou, Zhiyong, Qian, Xusheng, Li, Dashuang, Guo, Wanliang, Dai, Yakang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793570/
https://www.ncbi.nlm.nih.gov/pubmed/36572942
http://dx.doi.org/10.1186/s40001-022-00943-1
Descripción
Sumario:BACKGROUND: To develop an end-to-end deep learning method for automated quantitative assessment of pediatric blunt hepatic trauma based on contrast-enhanced computed tomography (CT). METHODS: This retrospective study included 170 children with blunt hepatic trauma between May 1, 2015, and August 30, 2021, who had undergone contrast-enhanced CT. Both liver parenchyma and liver trauma regions were manually segmented from CT images. Two deep convolutional neural networks (CNNs) were trained on 118 cases between May 1, 2015, and December 31, 2019, for liver segmentation and liver trauma segmentation. Liver volume and trauma volume were automatically calculated based on the segmentation results, and the liver parenchymal disruption index (LPDI) was computed as the ratio of liver trauma volume to liver volume. The segmentation performance was tested on 52 cases between January 1, 2020, and August 30, 2021. Correlation analysis among the LPDI, trauma volume, and the American Association for the Surgery of Trauma (AAST) liver injury grade was performed using the Spearman rank correlation. The performance of severity assessment of pediatric blunt hepatic trauma based on the LPDI and trauma volume was evaluated using receiver operating characteristic (ROC) analysis. RESULTS: The Dice, precision, and recall of the developed deep learning framework were 94.75, 94.11, and 95.46% in segmenting the liver and 72.91, 72.40, and 76.80% in segmenting the trauma regions. The LPDI and trauma volume were significantly correlated with AAST grade (rho = 0.823 and rho = 0.831, respectively; p < 0.001 for both). The area under the ROC curve (AUC) values for the LPDI and trauma volume to distinguish between high-grade and low-grade pediatric blunt hepatic trauma were 0.942 (95% CI, 0.882–1.000) and 0.952 (95% CI, 0.895–1.000), respectively. CONCLUSIONS: The developed end-to-end deep learning method is able to automatically and accurately segment the liver and trauma regions from contrast-enhanced CT images. The automated LDPI and liver trauma volume can act as objective and quantitative indexes to supplement the current AAST grading of pediatric blunt hepatic trauma.